75 research outputs found

    A rigorous statistical framework for spatio-temporal pollution prediction and estimation of its long-term impact on health

    Get PDF
    In the United Kingdom, air pollution is linked to around 40000 premature deaths each year, but estimating its health effects is challenging in a spatio-temporal study. The challenges include spatial misalignment between the pollution and disease data; uncertainty in the estimated pollution surface; and complex residual spatio-temporal autocorrelation in the disease data. This article develops a two-stage model that addresses these issues. The first stage is a spatio-temporal fusion model linking modeled and measured pollution data, while the second stage links these predictions to the disease data. The methodology is motivated by a new five-year study investigating the effects of multiple pollutants on respiratory hospitalizations in England between 2007 and 2011, using pollution and disease data relating to local and unitary authorities on a monthly time scale

    On Bayesian "central clustering": Application to landscape classification of Western Ghats

    Full text link
    Landscape classification of the well-known biodiversity hotspot, Western Ghats (mountains), on the west coast of India, is an important part of a world-wide program of monitoring biodiversity. To this end, a massive vegetation data set, consisting of 51,834 4-variate observations has been clustered into different landscapes by Nagendra and Gadgil [Current Sci. 75 (1998) 264--271]. But a study of such importance may be affected by nonuniqueness of cluster analysis and the lack of methods for quantifying uncertainty of the clusterings obtained. Motivated by this applied problem of much scientific importance, we propose a new methodology for obtaining the global, as well as the local modes of the posterior distribution of clustering, along with the desired credible and "highest posterior density" regions in a nonparametric Bayesian framework. To meet the need of an appropriate metric for computing the distance between any two clusterings, we adopt and provide a much simpler, but accurate modification of the metric proposed in [In Felicitation Volume in Honour of Prof. B. K. Kale (2009) MacMillan]. A very fast and efficient Bayesian methodology, based on [Sankhy\={a} Ser. B 70 (2008) 133--155], has been utilized to solve the computational problems associated with the massive data and to obtain samples from the posterior distribution of clustering on which our proposed methods of summarization are illustrated.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS454 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Comparative Study of Text Embedding Models for Semantic Text Similarity in Bug Reports

    Full text link
    Bug reports are an essential aspect of software development, and it is crucial to identify and resolve them quickly to ensure the consistent functioning of software systems. Retrieving similar bug reports from an existing database can help reduce the time and effort required to resolve bugs. In this paper, we compared the effectiveness of semantic textual similarity methods for retrieving similar bug reports based on a similarity score. We explored several embedding models such as TF-IDF (Baseline), FastText, Gensim, BERT, and ADA. We used the Software Defects Data containing bug reports for various software projects to evaluate the performance of these models. Our experimental results showed that BERT generally outperformed the rest of the models regarding recall, followed by ADA, Gensim, FastText, and TFIDF. Our study provides insights into the effectiveness of different embedding methods for retrieving similar bug reports and highlights the impact of selecting the appropriate one for this task. Our code is available on GitHub.Comment: 7 Page
    • …
    corecore